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Abstract. We have experimentally isolated thepure single-ion crystal-field origin irreducible
magnetostrictive strainsεα,1 and εα,2, which respectively represent the volume and the shape
c/a ratio distortions, for the tetragonal itinerant ferromagnet Y2Fe14B. The unusual thermal
variations of those strains, peaking at about 200 K and decreasing with temperature, have no sensible
explanation within the Callen–Callen standard theory of magnetostriction for localized magnetic
moments. Instead a developed simple rigid-band Stoner model of magnetostriction for itinerant
3d electrons explains quite well such dependencies and also allows us to extract themicroscopic
magnetoelastic coupling parametersMα

12 andMα
22, accounting for those strains respectively. These

parameters are very large, about 10 meV/Fe atom, and of opposite signs.

1. Introduction

The number of itinerant ferromagnets, based on the 3d elements iron, nickel and cobalt, where
themicroscopicmagnetoelastic (MEL) coupling parameters of single-ion crystal electric field
(CEF) origin, have been determined is really very scarce, in spite of their importance within the
subject of ferromagnetism. These parameters take into account the itinerant electron spin–orbit
and orbit–lattice interactions, responsible for the MEL coupling. In fact, to our knowledge, only
in Ni [1] and in Y2Fe17 [2] have such parameters been neatly determined from experiment.
This is by no means a straightforward task because obtaining such MEL parameters from
experiment necessitates passing through the development of a theoretical magnetostriction
frame model for the 3d-band itinerant electrons. The aims of this work are twofold: to
enlarge the meagre number of systems where those MEL parameters are known and, also
most interesting, because of the considerable interest of the knowledge of the magnetostriction
in the Y2Fe14B intermetallic. This knowledge is of substantial practical importance because
the isomorphous Nd2Fe14B compound seems, to date, the strongest energy product permanent
magnet known for technical applications [3], and, although its magnetostrictive properties were
reported some time ago [4], the contribution to the magnetostriction by the Fe sublattice alone
was never separated out. Indeed, Y2Fe14B is the ideal candidate for obtaining such information,
as the strongest exchange interaction is within the iron sublattice. It is worthwhile to mention
that the magnetostrictive distortions are somewhat larger for Y2Fe14B than for Nd2Fe14B, and
in the case of thec/a ratio tetragonal distortion they are of opposite sign, a result of clearly
practical relevance as well.
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Y2Fe14B crystallizes in the tetragonal space groupP42/mnm, the Fe atoms occupying
six different positions within the unit cell (c, e, j1, j2, k1 and k2), all of point symmetry lower
than 2mm [5]. This compound orders ferromagnetically belowTc = 571 K [6] and the iron
magnetic moment in the six positions ranges from 1.95 to 2.8 µB [6, 7]. The hcp structure
a [100] andc [001] directions respectively are the magnetically hard and easy axes.

We here report on magnetostriction measurements performed on a single crystal of
Y2Fe14B, in applied strong magnetic fields (up to 14 T) and in the temperature range 4.2–400 K,
which have allowed us to determine theα-mode irreducible magnetostrictive strains supported
by the tetragonal crystalline structure. Thoseα-strains are two: the volume distortion,
i.e.εα,1 = εxx + εyy + εz, and the shape orc/a ratio distortion,εα,2 = (√3/2)(εzz − (εα,1/3)),
whereεjj are the Cartesian strains [8]. These strains naturally appear when the average
magnetization rotates from the easy axis down to the hard axis and have their origin in
the single-ion CEF interaction [8]. However, they are also substantially contributed by the
strains developed by the forced magnetization process, which should be present in Y2Fe14B
even during the magnetization rotation process, as we shall see. In this work we present
a thorough experimental and theoretical study of theα-mode strictions for Y2Fe14B, where
we have been able to separate out such pure single-ion CEF origin magnetostrictions. To
our knowledge such an isolation has not been ever reported to the degree of accuracy here
attained. A preliminary report about our magnetostriction experiments in Y2Fe14B was
presented elsewhere [9].

A theoretical model was early developed [2] in order to explain and analyse the single-ion
CEF magnetostriction in the hexagonal 3d-band itinerant ferromagnet Y2Fe17. This model has
been now successfully applied to the analysis of the magnetostriction of the tetragonal Y2Fe14B
intermetallic, generalizing it somewhat and introducing some quite fruitful modifications. The
last outcome of our present work is the extraction of the pure single-ion CEFmicroscopic
MEL parameters for Y2Fe14B, which are at the origin of the above mentioned strictions.
Not less important is to bring about an explanation of the observed non-monotonic variation
of the irreducible strictions with temperature, a classical problem in magnetostriction of
3d metals [10].

The organization of the paper is the following: in section 2 we present the experimental
results on theα-mode magnetostriction measurements for Y2Fe14B; in section 3 we deal
with the theoretical model of CEF magnetostriction for 3d-band tetragonal systems and
the calculations made, and we compare them with the experimental results; in section 4
we extract the results of our work and in section 5 we discuss them and summarize the
conclusions.

2. Experimental results: irreducibleα-mode magnetostriction for Y2Fe14B

The magnetostriction experiments were performed upon a single crystal of Y2Fe14B. The
crystal was grown by the Czochralsky technique, from argon arc-melted buttons of the
constituents (at least 99.9% purity). The crystal was cut and x-ray back-Laue oriented with
the (c,a) and(c, b) planes in coincidence with the sample surfaces. The magnetostriction
measurements were performed using the well known strain-gauge (SG) technique. The applied
strong pulsed magnetic fields (up to 14 T, with pulsed width of∼=50 ms) were obtained using
a capacitor bank, which was discharged into a liquid nitrogen refrigerated copper wound coil.
More details of the technique can be found in [11]. In essence we used an AC bridge with two
of its arms the SG resistor cemented on the sample and an SG cemented on pure fused silica,
in order to correct for unwanted spurious signals, mainly SG magnetoresistance. The overall
accuracy of our magnetostriction technique was estimated as±5× 10−6.
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(a)

(b)

Figure 1. (a) Isotherms at selected temperatures for the irreducible volume magnetoelastic
strainεα,1(a) against applied magnetic field along the harda axis, for the tetragonal Y2Fe14B
ferromagnet. The ‘kinks’ correspond to the anisotropy field values,HK , and beyond them
parastriction is developed. (b) As for (a) but for the irreducible strainεα,2(a), which measures the
tetragonal distortion (c/a ratio distortion) for the Y2Fe14B intermetallic.

In order to determine the above mentionedα-strictions, we need to perform two different
experiments: applying the magnetic field along the easyc axis and along the harda axis of
the Y2Fe14B crystal, and each time measuring the strains along the basal plane(a, b) axes
and alongc. The expressions relating the irreducible strains to the experimentally measured
λ(φ, β) strictions(φ andβ respectively are the applied magnetic field and strain measurements
directions) areεα,1(a) = λ(a,a) + λ(a, b) + λ(a, c) and εα,2(a) = (1/

√
3)(λ(a, c) −

(1/2)(λ(a,a) + λ(a, b))) [12].
In figures 1(a) and (b) we present the isotherms forεα,1(a) and εα,2(a) (a means the

direction of the applied magnetic field). At low temperatures the isotherms show distinctive
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(a)

(b)

Figure 2. (a) Isotherms at selected temperatures for the irreducible volume magnetoelastic strain
εα,1(a)against applied magnetic field along the easycaxis for the tetragonal Y2Fe14B ferromagnet.
The low temperature almost linear-variation, starting at zero magnetic field, is associated with the
magnetization paraprocess. (b) As for (a) but for the irreducible strainεα,2(a), which measures the
tetragonal distortion (c/a ratio distortion) for the Y2Fe14B intermetallic. The lines are eye guides.

‘kinks’, evolving afterwards almost linearly with field. The fields at the kinks coincide quite
well with the measured anisotropy field valuesHK [13], where the average magnetization has
fully rotated from thec axis down to thea axis against the anisotropy torque. This linear
variation is also observed in theεα,1(c) andεα,2(c) isotherms (figures 2(a) and (b)) starting
from zero applied field, and because thec axis is easy,εα,1(c) andεα,2(c) can be associated
with the forced magnetization or paraprocess mechanism. In this paper we are not interested in
the rather difficult theoretical analysis of parastriction, where many-body 3d-electron effects
seem to lead to the paraprocess phenomenon [14], and where the extremely difficult analysis
of the MEL coupling has not yet been performed.
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However a by no means negligible forced magnetostriction contribution, which
‘contaminates’ the CEF one, is already present in theεα,1(a) andεα,2(a) strainsbelowHK

(figures 1(a) and 1(b)). This happens because the strain slopes aboveHK are the same for the
a andc directions (compare figures 1(a) and 2(a) and figures 1(b) and 2(b), respectively), and
because alongc the low temperature slopes do not change significantly on crossing the field
HK. The existence of parastriction along the rotational magnetization process has not yet been
reported, to our knowledge, and it constitutes a intriguing result.

Now, at the fieldHK the rotational magnetization process is finished and in order to
obtain thepure single-ion CEF magnetostrictions we have to subtract from theεα,1(a) and
εα,2(a) values atHK the corresponding parastriction contributions. This can be accomplished
by assuming that these contributions are accounted for byεα,1(c) andεα,2(c), as discussed
before. Therefore in figures 3 and 4 we respectively show the thermal variations of the pure
single-ion CEF strains1εα,1 ≡ εα,1(a) − εα,1(c) and1εα,2 ≡ εα,2(a) − εα,2(c), taken at
the anisotropy fieldHK, which is slightly temperature dependent. The variations are rather
similar, peaking at about 200 K and decreasing with temperature (figures 3 and 4), being
almost proportional to each other. The interesting feature is that these thermal variations are
not reminiscent at all of the predicted ones by the Callen–Callen standard theory of single-ion
CEF magnetostriction for localized electrons, which merely predicts a monotonic decrease of
the strictions with increasing temperature [8]. As we shall explain below this more complex
variation has its origin in the itinerant character of the iron 3d magnetic moments.

Figure 3. Temperature dependence of the differential irreducible volume strainεα,1(a)−εα,1(c) for
the Y2Fe14B ferromagnet. Within the parenthesis are shown the applied magnetic field directions.
The strain values are for the field values where the isotherms show a ‘kink’, i.e. at the anisotropy
fieldsHK

∼= 2 T (see figure 1(a)). The line is the theoretical model fit, calculated as explained in
the text and with the parameters quoted in table 1.

Table 1. Values of the model parameters used for the single-ion CEF magnetostriction calculations
in the Y2Fe14B intermetallic. The meanings of the parameters are explained in the main text. The
values forB20, B44, A,Mα

12 andMα
22 are expressed in eV/Fe atom, and those of�0,�1 andδ(0)

in eV.R andn are dimensionless.

R B20 B44 �0 �1 n δ(0) α 103A 103Mα
12 103Mα

22

0.95 −0.77 ±0.41 0.5 0.12 6.7 1.92 0.4 23.4−18 8.6
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Figure 4. As for figure 3 but for the differential irreducible tetragonal strainεα,2(a) − εα,2(c).
Now the strain values correspond to the ‘kinks’ of the isotherms ofεα,2(a) (see figure 1(b)), i.e. at
the anisotropy fieldsHK as well. The line is the theoretical model fit, calculated as explained in
the text and with the parameters quoted in table 1.

3. Magnetostriction model for itinerant tetragonal ferromagnets

3.1. Model Hamiltonian and energy band splitting

The existence of CEF origin magnetic anisotropy, between the tetragonalc axis and the basal
plane [13], and of magnetostriction in Y2Fe14B, must be connected with the existence of
orbital degenerate energy levels for the iron 3d-band electrons. However on the grounds of
the so low point symmetries for the six Fe sites, the CEF anisotropy vanishes, as the resulting
unperturbed Fe energy levels are singlets [8, 15]. Therefore we should have in Y2Fe14B at least
one effective doublet, which can produce both single-ion CEF anisotropy and magnetostriction.
This situation may be modelled considering that the six Fe sites are reduced to only one effective
site within an average tetragonal symmetry. Therefore in our model we describe the 3d itinerant
electrons by Bloch wavefunctions within the tight-binding approximation, and moving around
within such a symmetry. For tetragonal symmetry the splitting by the CEF becomes [8, 15]: an
orbital doublet, with wavefunctions{|xz〉, |yz〉}, and three orbital singlets, with wavefunctions
|xy〉, |x2 − y2〉 and|2z2 − x2 − y2〉. Our starting wavefunction basis is constituted by these
orbital states, adding to them the spin states| ± 1/2〉, i.e. ten states overall. Summarizing our
model works within the tight-binding approximation, using Bloch functions of the usual kind,
|k; ν〉 [16], wherek is the electron wave-vector andν, the orbital plus spin state.

The overall itinerant 3d-electron Hamiltonian at the electron lattice pointr can be modelled
in the followin way:

H(r) = HCF +Hz +Hso +Hme +Hel (1)

where the different Hamiltonians are explained below. They all refer to a single ion, as the
matrix elements〈k′; ν ′|H |k; ν〉 can be readily shown to bek independent. Now, for tetragonal
symmetry thesimplestCEF Hamiltonian giving one orbital doublet and three orbital singlets,
within the above basis, is

HCF = B20O20 +B44O44 (2)
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where the term inB44 is the smallest order one to have a tetragonal CEF. The energy levels
ensuing from Hamiltonian (2) are:−120 for the doublet, and{−2120, 2120 − 144 and
2120 +144} for the singlets, where120 ≡ 3B20 and144 ≡ 12B44. O20 andO44 are Stevens
operators of the orbital angular momentum,L [17]. The CEF parametersB20 andB44 for
Y2Fe14B have not been reported, and therefore should be adjusted within our magnetostriction
calculations. Adding in equation (2) the next tetragonal termB40O40 [15] increases the number
of CEF parameters to be adjusted without modifying qualitatively the kind of splitting. In fact
we will see that this approximation works quite well when comparing our model results with
the magnetostriction experiments in Y2Fe14B.

The Zeeman term is composed of spin and of orbital contributions, which within the mean
field approximation and under an effective magnetic field,Heff , of exchange origin (for the
numerical calculations the external field,Happ., is assumed to be zero, as we are calculating
almost spontaneous strictions forHK � Heff), can be written as

Hz = µB(σ + αL) ·Heff (3)

whereσ are the Pauli matrices,α, a parameter to introduce the effective CEF quenching of the
momentumL and also the effect of the orbital polarization [18] byHeff . The spin–orbit (SO)
contribution has the usual form

Hso= AL · σ (4)

whereA is the SO coupling constant.
The CEF single-ion magnetoelastic coupling Hamiltonian, up to second-order terms, has

the form [2, 8]

Hme= −
∑
i=1,2

[
Mα
i1[L2

x +L2
y +L2

z ] +

√
3

2
Mα
i2[L2

z − 1
3L(L + 1)]

]
εα,i (5)

whereMα
ij (i, j = 1, 2) are themicroscopicMEL coupling parameters andεα,i the irreducible

strains. The classical elastic energy,Hel, in terms of the symmetry elastic constantsCαij can
be found elsewhere [8].

A full analytical diagonalization of the HamiltonianH was performed. Because the
CEF energy is much greater than the SO one, we introduced the simplifying assumption of
neglecting the matrix elements of the SO interaction between the doublet and the singlets and
among the singlets themselves. As in the experiment, we align the effective magnetic field,
Heff , parallel and perpendicular(aaxis) to thecaxis. The energy levels,Eλ, and corresponding
wavefunctions,|λ〉, are readily obtained and we omit giving here their specific expressions for
the sake of conciseness. The level expressions are similar in structure to the ones that we
obtained before for the Y2Fe17 compound [2], differing only because of the different CEF
symmetries, i.e. hexagonal in Y2Fe17. They are functions of: the CEF parametersB20 and
B44, A, α, Heff (or equivalently of the Stoner gap,δ = (M+ − M−)Heff , where± refer to
the spin polarizations) and, most important, the MEL energy. The MEL contributions to the
diagonalizedHamiltonianH (equation (1)) energy levels are linear functions of the MEL
parametersMα

ij and the strainsεα,i , and are given in appendix A. Within our model, the ten 3d
energy levels,Eλ (λ = 1–10), are respectively the centres of ten narrow elliptical shaped bands
[19] with densities of statesρλ(E) and half-bandwidths�λ. To these orbital bands we add
two ‘wide’ (of �0 half-bandwidth) non-orbital bands with spins up and down, coming from
itinerant electrons of other characters than 3d, and whose centres are therefore determined by
the spin only Zeeman coupling (these bands are numbered byλ = 11, 12 respectively).
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3.2. Magnetostrictionα-mode calculations

The calculation of the strictionsεα,1 andεα,2 in the Y2Fe14B intermetallic passes by evaluating
the distortion of the 3d-band electronic structure produced by the strains. In order to perform
such a formidable task some reasonable simplifications should be introduced within our model
calculations. First it is well known that the main contribution to MEL coupling comes from
a few high symmetryk-points in the tetragonal Brillouin zone [20]. This is so because those
k-states are degenerate or nearly so [21]. Now, such a degeneracy is lifted out by the strong
Zeeman and the weaker SO interactions and henceforth mixed states of non-null average orbital
angular momentum〈L〉 will appear. Therefore those states can give rise to magnetostriction.
The second condition is that suchk-points must be close enough to the Fermi surface, as in
the other caseL is fully quenched, because of the orbital interband electron hopping between
Fe sites [21]. Specifically, it will be enough to consider only onek-point along thec∗-axis of
the tetragonal Brillouin zone, and close to the Fermi wavevector,kF, in order to get the|k; λ〉
states(λ = 1–4, coming from the{|xz〉, |yz〉} doublet) partially unoccupied (fully occupied
levels are indeed magnetostrictively inert, as the average〈L〉 = 0).

It was early shown [2] that under applied magnetic field and resulting induced strains, and
within the Stoner rigid band approximation, the variation of the relevant magnetic free energy
(i.e. resulting from non-null〈L〉 levels),Um(Heff , ε

α,i) is given by the model expression

1Um = −
10∑
λ=1

nλ1Eλ (6)

where1Eλ are the band-centre energy shifts produced by those agents, and

nλ =
∫ µ

−∞
ρλ(E) dE (7)

is theλth-band electron number, with the constraint
∑12

λ=1 nλ = n, n being the total number
of electrons per Fe atom (3d ones and itinerant electrons of other characters [22]; only the
3d bands, withλ = 1–10, will indeed contribute toUm in equation (6)).µ is the chemical
potential, which was determined from the above constraint equation (7), as we shall see below.

From equation (6) one immediately obtains the relations

∂Um

∂εα,i
= −

10∑
λ=1

nλ
∂Eλ

∂εα,i
(i = 1, 2). (8)

Then from equation (8) and equations (A1)–(A3) of appendix A we specifically obtain

∂Um

∂εα,i
= 6Mα

i1Sλ −
√

3Mα
i2Wλ (i = 1, 2) (9)

where

Sλ =
10∑
λ=1

nλ (10a)

Wλ = 1

2

4∑
λ=1

nλ −
8∑
λ=5

nλ +
10∑
λ=9

nλ. (10b)

Notice thatSλ andWλ depend on theHeff orientation within the unit cell, becausenλ
depends onHeff , according to equation (7). Also,Sλ is embodied in the magnetostriction
calculation because it is not quite the 3d electron numbern, but it results from the number of
electronic states with unquenchedL. We will come back afterwards to this point.
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Now, in order to obtain the equilibrium strains,ε̄α,i , in terms of themicroscopicMEL
parameters, one needs to add toUm the classical elastic energyUel and minimizeUm + Uel

against the strains. One obtains

ε̄α,i = 1

1α

[
Cαjj

(
− ∂Um

∂εα,i

)
− Cα12

(
− ∂Um

∂εα,j

)]
i, j = 1, 2; j 6= i (11)

with 1α ≡ Cα11C
α
22 − (Cα12)

2. One has to distinguish betweenUm, for Heff parallel (‖)
and perpendicular⊥ to thec axis. From equations (9) and (11) we immediately obtain the
expressions for the equilibrium strains,

ε̄α,1(p) = Aα11Sλ(p) +Aα12Wλ(p) (12a)

ε̄α,2(p) = Aα21Sλ(p) +Aα22Wλ(p) (12b)

where p stands for the considered twoHeff orientations, parallel (p=‖) and
perpendicular(p=⊥) to thec axis. TheAij (p) parameters, in equations (12), which embody
the wanted microscopic MEL parameters, are given in appendix B. The thermal dependencies
of the strains are embodied within the functionsSλ(p) andWλ(p), which in turn depend
on the temperature dependent Stoner gap,δ, through the spontaneous magnetization,Ms(T )

(see section 3.1 for theδ expression).

4. Results

Apparently we have at our disposal four irreducible strains, i.e.εα,i(a) and εα,i(c), with
i = 1, 2, in order to eventually determine the four MEL parametersMα

ij . But theεα,i(a) strains
are contaminated with forced magnetostriction even for fieldsH < HK. However, as our model
is only suitable for the theoretical analysis of the pure single-ion CEF magnetostriction, we
have to compare the model equations (12) with the two differential strains1εα,1 and1εα,2,
i.e. removing the forced striction, as discussed in section 2. But this procedure does not
remedy our problem of determining four MEL parameters from the two1εα,1 and1εα,2

strains. However, from figures 3 and 4 we can observe that1εα,1 and1εα,2 are proportional
to each other, within the experimental error, in the range of temperatures studied. Looking at
equations (12) this proportionality is a strong indication thatSλ(‖) ∼= Sλ(⊥) = Sλ, insofar as
these non-null〈L〉 electron band fillings do not differ too much for the twoHeff orientations,
as our detailed calculations reveal. Still we have four unknowns in equations (12). We cannot
set outMα

11 = Mα
21 = 0, as according to equation (5) they have CEF contributions. However

a further reasonable approximation that can be made is to assume that the two irreducible
α-modes are decoupled, i.e. we set outCα1,2

∼= 0. Introducing all those simplifications in
equations (12) we finally obtain

1εα,1 ≡ εα,1(a)− εα,1(c) =
√

3Mα
12

Cα11

[Wλ(⊥)−Wλ(‖)] (13a)

1εα,2 ≡ εα,2(a)− εα,2(c) =
√

3Mα
22

Cα22

[Wλ(⊥)−Wλ(‖)]. (13b)

In figures 3 and 4 we present the fits by the theoretical model equations (13) to the
experimentally obtained thermal variations of the differential strains1εα,1 and1εα,2. Overall
the agreement obtained can be reported as rather satisfactory. Our target is to obtain the MEL
parametersMα

12 andMα
22. However nothing is known about the elastic stiffness constantsCαii

for Y2Fe14B; we only dispose of the elastic bulk,B, and shear,G, moduli as determined for
polycrystalline samples [23]. It can be shown that the symmetry elastic constants are related to
them in the wayCα11

∼= B ∼= 12.5 eV/Fe atom andCα22
∼= 4G ∼= 30 eV/Fe atom, values at 0 K;
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they vary slightly with temperature up toTc
∼= 571 K [23]. The values of the model parameters

used in the fits are collected in table 1. The quoted values ofR,B20,B44,�0,�1,Mα
12 andMα

22
are the result of the fits of the thermal variations of1εα,1 and1εα,2, although we started the
fits with some parameters (R, B20, B44,�0 and�1 andα), previously found for the also axial
itinerant iron-rich ferromagnet Y2Fe17 [2]. The ratio between the filling capacities [19] of the
elliptical wide conduction band and the five 3d-electron narrower bands is given byR. The
value ofA is the SO coupling parameter for metallic iron [1]. We fixed the total number of
electrons within the 3d bands and other characters itinerant bands to ben = 6.7 per Fe atom, as
resulting from polarized band structure calculations [22]. The 0 K Stoner gap was also taken
from the same calculations [22]. As mentioned in sections 3.1 and 3.2,δwas allowed to change
with temperature according to the temperature variation of the spontaneous magnetizationMs

[24]. Then the resulting Fermi level as obtained from the constraint equation (7) amounts to
µ(0) = 1.73 eV at 0 K, measured from the unsplit wide-band bottom. It became slightly
temperature dependent in order to keep the total number of electrons fixed,n = 6.7 [22] (the
variation ofµ = µ(T ) was about−10% in the temperature range from 4.2 to 400 K).

The second major issue of this work is related to the obtention of the CEF and MEL
parameter values. For Y2Fe14B, B20 is of the same order of magnitude as for Y2Fe17 and of
opposite sign(B20 = 1.23 eV/Fe atom for Y2Fe17) [2], i.e. in good agreement witha being
in the latter compound the easy axis (planar) and thec axis in Y2Fe14B (axial). It is worth
noticing that theB20 value is about three orders of magnitude smaller(B20 ≈ −0.2 meV/ion)
[12] for the Nd3+ ion in the isomorphouscompound Nd2Fe14B and of the same sign. The
much larger value ofB20 for the Fe atom is a consequence of the expected very intense CEF
gradient,A20 (B20 = αLA20〈r2〉3d , whereαL is the Stevens reduced matrix element and〈r2〉3d ,
the 3d shell radial quadratic moment), felt by the Fe atom in transition metal intermetallic
compounds at sites of low point symmetry, because of the much weaker 3d-electron shell
CEF shielding. However magnetocrystalline anisotropy energy is weaker (anisotropy field
HK
∼= 1.8 T at 4.2 K) in Y2Fe14B than in Nd2Fe14B (HK

∼= 17 T at 4.2 K) [7] because of the
strong quenching of the angular orbital momentumL in the former. It is noticeable that we
found the sign ofB44 = ±0.41 eV/Fe atom to be irrelevant as it produces the same calculated
1εα,1 and1εα,2 values, in good agreement with the negligible basal plane magnetocrystalline
anisotropy found in Y2Fe14B [7].

The signs ofMα
12 andMα

22 are oppositebecause the1εα,1 and the1εα,2 differential
strains have opposite signs. This is also a peculiar feature of magnetoelastic coupling in
many anisotropic uniaxial rare earth ferromagnets [12]. Also the MEL parameters become
larger (between about one and two orders of magnitude) than in strongly anisotropic rare earth
intermetallics [12]. Generally this is again a consequence of the stronger CEF felt by the Fe
atoms in 3d intermetallics.

5. Discussion and conclusions

We have been able to isolate thepuresingle-ion crystal-field origin magnetostrictiveα-strains
of volume,εα,1, and tetragonal,εα,2, characters, for the tetragonal itinerant iron rich Y2Fe14B
ferromagnet, data of considerable technological importance. In spite of the simplifications
introduced: the assumption of an average tetragonal symmetry for the six low symmetry
Fe sites, the assumed simple elliptical band density of states, the accounting for only one
k-wavevector within the Brillouin zone, the neglect of some matrix elements of the spin–orbit
Hamiltonian and the decoupling between theα-modes, our model explains quite well the main
anisotropic and magnetoelastic features observed in Y2Fe14B. In fact the sign obtained for
the CEF parameterB20 agrees with an easyc axis for the system. The irrelevance of the
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B44 CEF parameter sign for the calculated striction values must be related to the fact that
B44 does not appear in the energy of the CEF orbital doublet, which are the only model states
magnetostrictively active. Finally the absence ofSλ (as defined in equation(10a)) in the model
differential strains given by equations (13) was fully justified in section 4.

The other most noticeable effect is the observed non-monotonic temperature variations
of the strictions1εα,1 and1εα,2, which both peak at about 200 K and then decrease with
temperature. This effect seems ubiquitous for Fe rich systems, as also appears in Fe metal [10]
and in the intermetallic Y2Fe17 [19]. The explanation of a such decrease naturally comes about
from our simple rigid-band Stoner magnetostriction model as follows. For the magnetization
set along the harda axis, when temperature decreases below about 200 K the sub-bandsλ = 2
and 4 (which result from the magnetostrictive{|xz〉, |yz〉} doublet), become, according to our
calculations, rapidly populated, which brings about a decrease of the orbital angular momentum
〈L〉 and thereof of the pure CEF magnetostriction. Meanwhile for the magnetization along
thec axis the populations of all doublet bands remain constant, according to our calculations.
These population increases are related to the observed corresponding partial depopulation of
the singlet bandλ = 6 (coming from the|xy〉 singlet) and of the non-orbital wide bands.

The third main outcome from the comparison of our model with the experiment is the
obtention ofmicroscopicMEL coupling parameters, from where to quantify the strength of
such a coupling on realistic physical grounds. We should notice that the MEL parameters,
although comparable, are of the opposite sign, i.e.Mα

i2 = −0.018 eV/Fe atom andMα
22 =

+0.0086 eV/Fe. If the assumptionMα
i2 = αL(∂A20/∂ε

α,i)〈r2〉3d (i = 1, 2), as for localized
magnetic electrons [12], applies, the equal sign ofMα

12 andB20 is physically correct as the
uniform volume strain does not modify the CEF symmetry. However, the ratioc/a is modified
under the tetragonal strain and a change of theMα

22 parameter sign is possible [12].
We should finally discuss the degree of confidence to be put on the different parameter

values ensuing from this work. Our magnetostriction experiment explanation, although
reputable, looking at the excellent fittings obtained (figures 3 and 4), is based on asimplified
model to deal with the formidable task of calculating the rotationalα-mode strictions in such
a complex system as Y2Fe14B. Therefore the degree of validity should not be extrapolated
beyond the boundaries of this simple model, although it is fair to say that most of the ingredients
which would require a more sophisticated model are included in ours, in particular within
Hamiltonian equation (1). Then within this particular context the parameter values used
are correct and accurate enough because they are those giving the ‘best’ fit to the measured
magnetostrictions. We have also seen that the orders of magnitude and signs obtained for the
fitted parameters are quite reasonable physically and in good agreement with other available
sources. In particular the orders of magnitude and signs of the single-ion microscopic CEF
MEL parameters, one of the targets of our work, are rather convincing to us. Nevertheless
again we consider our work as a first step on the way to understand the MEL coupling in
itinerant ferromagnetic metals, as there are certain uniaxial 3d intermetallics, where rotational
magnetostriction is larger than in the pure and ‘classical’ ferromagnets such as iron and
nickel [10].
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Appendix A

The magnetoelastic energy contributions to the energy levels of Hamiltonian equation (1) for
both orientations ofHeff , e.g. for theεα,2 mode, are:

Em1,2 = Em3,4 = −
(

6Mα
2,1−

√
3

2
Mα

2,2

)
εα,2 (A1)

Em5,6 = Em7,8 = −(6Mα
2,1−

√
3Mα

2,2)ε
α,2 (A2)

Em9,10 = −(6Mα
2,1−

√
3Mα

2,2)ε
α,2 (A3)

where the states{|1〉, |2〉} and {|3〉, |4〉} respectively are related to the unperturbed orbital
doublet {|xz〉, |yz〉} and the remainder states, to the three singlets|xy〉, |x2 − y2〉 and
|2z2 − x2 − y2〉 respectively, in the way mentioned in section 3.1. For theεα,1 mode the
above equations stand merely changing{Mα

2,1,M
α
2,2} for {Mα

1,1,M
α
1,2} respectively.

Appendix B

The parametersAij (p) quoted in equations(12a) and(12b) are defined as follows

Aα11 = 6(−Cα22M
α
11 +Cα12M

α
21)/1

α

Aα12 =
√

3(−Cα12M
α
22 +Cα22M

α
12)/1

α

Aα21 = 6(Cα12M
α
11 +Cα11M

α
21)/1

α

Aα22 =
√

3(−Cα12M
α
12 +Cα11M

α
22)/1

α.
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